Harrison Middleton University

How Scientific Language Is Created

How Scientific Language Is Created

We’re excited that you’ve joined the conversation! At HMU, we want to continue the great authors’ conversations in a contemporary context, and this blog will help us do that. We look back to Aristotle and the early philosophers who used reason and discourse to gain wisdom and now we endeavor to do the same every day.

CATEGORIES

December 21, 2018

Thanks to Alissa Simon, HMU Tutor, for today’s post.

Last week, I posted a blog about Bohr’s use of language. Specifically, I wanted to investigate how the field of science will find ways to accurately describe indescribable events. I discussed the way that modal verbs (helping verbs which express doubt or uncertainty like “might” or “could”) can negatively affect the reception of a scientific article. I think Bohr embraced this idea of uncertainty. In fact, he claims that areas of uncertainty become the best areas for advancement because they point out specific questions. Rather than formulating science as if it were static he asked that we (both the scientist and the reader) investigate our use of language, our preconceived notions, and our unknowns. Bohr accepts, in fact, desires to imbue scientific language with doubt. I think he goes to great lengths when discussing language in order to enlighten future generations of scientists and readers as to the complexities involved in atomic sciences. That science can be grounded upon facts but still involve many, many questions is part of the reality of science. Therefore, language must reflect this reality. Really, we do not have all the answers and should not proceed as if we do. The problem is, however, that journal articles which include doubtful language are often regarded as less rigorous, less accurate, and less scientific. Bohr, however, would applaud these articles as attempts to base the unknowns upon the knowns. Moving forward, moving into an era of atomic theory, then, will demand a higher sense of intelligence from both readers and scientists.

In today’s blog, I want to better understand two parts of the question of scientific language. First, I am interested in the perception and reception of modal verbs in languages other than English. If modal verbs in English are perceived as unscientific, are they also perceived this way in other languages? Much of science is presented in English. In limiting our scientific language to a handful of languages, do we limit our ability to describe the indescribable? Scientists often think outside the box in order to find terms that reflect what they find. For example, names of celestial bodies refer to mythological beings. Latin terms classify plants. Clouds, too, were named in Latin according to observable features. What then, do we use to describe atomic energy: metaphor, mythology, ancient languages, compounds? If scientific articles are published in only a handful of languages, does this exclude some metaphoric understanding or phrasing from an outside culture? Does the way that we currently publish scientific findings prohibit (or at least discourage) any culture from entering the dialogue? Also, how do we adequately translate any scientific finding into another language? It is common in the scientific realm to stick to the original language when using a specific term. So, the Latin name “cirrus” is often used in the translation, rather than a word from the target language. However, using a term for an identifiable object, such as a cloud (or plant), is very common and accessible which is not true of atomic theories. In other words, it is incredibly difficult to adequately express the experience of atomic behavior in any accurate, identifiable, universal language. I just wonder if this dependence upon one particular language limits us in some unforeseeable way.

My second question today deals with Bohr’s insistence that we continue to use classical terminology even for unobservable data. I understand the importance of adherence to non-abstract language as a way to describe abstract ideas. However, language is never static, which may present problems for the idea of classical terminology. For example, atomic theory is so named only because at one time we assumed that atoms were the smallest pieces of material in existence. We now know that this is not true, so we have adjusted the definition of atomic as well as the public perception of the science. Furthermore, from Bohr’s Atomic Theory I chose to look up the term “ion” and am still uncertain about the definition’s accuracy. According to Merriam-Webster, “ion” is defined as either “1: an atom or group of atoms that carries a positive or negative electric charge as a result of having lost or gained one or more electrons; or 2: a charged subatomic particle (such as a free electron).” The terms “lost” and “gained” included in this definition make it sound as if an atom has a natural state, and that the ion is not the natural state. I struggle with this because having an electric charge may be considered just as natural as any other state. It may be important to note that the ion is less stable than another state, but that is not what the definition explicitly says. So, even if we stick with classical terminology, definitions will change over time. In fact, just in scanning the Wikipedia page for “ion,” our understanding has rapidly progressed in just under one hundred years. Furthermore, scientists such as Faraday (who first discovered ions) may have used the term differently than contemporary scientists. This is, of course, something that Bohr was intensely aware of, but perhaps the layperson will not understand the subtleties of these changes. I do understand his explanations regarding classical terminology, yet still, I am left wondering how one might be conversant in the language of science without knowing the history of an innumerable amount terms.

Clearly I am not a scientist, and I do not have the necessary skills to examine a lot of the terminology in Bohr’s Atomic Theory. However, I do spend a lot of time thinking about the effect of language on communication, society, and human life in general. I feel that it is of great importance (and benefit) to consider these larger questions as they relate to specific fields. I am grateful to Niels Bohr who used language as carefully and precisely as possible, so that even someone such as myself could attempt to understand the complexities of Atomic Theory.

To leave a comment, click on the title of this post and scroll down.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top
Skip to content